Molecular Spectroscopy for Food Analysis

Dr Kate Kemsley Analytical Sciences Unit Institute of Food Research kate.kemsley@ifr.ac.uk

In this talk:

- Mid-infrared spectroscopy
- Low-field NMR spectroscopy
- The food industry
- Case studies

Mid infrared spectroscopy

- Wavelength range is 400 4000 cm⁻¹ (wavenumbers, or 2.5 – 25 microns)
- Electromagnetic radiation is absorbed due to fundamental vibrations of molecular bonds
- Absorption are very chemically specific especially in the "fingerprint" region

Mid infrared spectroscopy

- Modern laboratory instruments are Fourier transform spectrometers (FTIR)
 - Broad-band radiation goes through the sample, individual frequency information extracted via Fourier transformation
 - This gives a "multiplex" advantage with regards signal-tonoise - high optical throughput
 - Laser reference beam means frequency axis is exceptionally accurate
 - Allows digital co-addition of repeated scans to improve signalto-noise ("signal-averaging")
 - Comparison across different samples without further alignment

A Fourier transform infrared spectrometer

Schematic of Fourier transform infrared spectrometer system

ATR Sampling methods

- ATR is very effective for analysing wide variety of samples (liquids, semi-solids, solids, powders)
- Evanescent wave penetrates sample at crystal surface – requires good contact between sample and crystal
- Diamond ATR accessories use a clamp to ensure contact between the sample and crystal
- Effective pathlength is refractive-index dependent, and difficult to calculate

Mid infrared spectrometers

- FT-IR spectrometers are "single-beam" instruments
- Analysing a sample involves:
 - Collecting a "single-beam background" of the empty sampling accessory. *Call this* $I_0(\lambda)$
 - Collecting a single-beam spectrum with the sample in place. *Call this I (λ)*
- The absorbance at any given wavelength is given by:

 $A(\lambda) = -\log_{10} (I(\lambda) / I_0(\lambda))$

LINEAR WITH CONCENTRATION: Beer-Lambert law

Low-field (60MHz) NMR

- Nuclear Magnetic Resonance spectroscopy
 - gives detailed information on chemical composition
- Low-field (60Mhz "bench-top") instruments are a recent development
- Compared with high-field spectrometers, these are:
 - Very low-cost (1/10th the capital cost)
 - Virtually no running costs (no cryogens, no airconditioning)
 - Robust and easy-to-use by non-specialists

Low-field (60MHz) NMR

Triglyceride NMR spectra

Most fat in foods is present as triglycerides:

The Food Industry

The UK agri-food sector....

- ...is the largest industry in the country, worth >£96 billion in 2011
- …employs ~500,000 people
- …high turnover, low profit margins
- ...resilient to economic downturn (people always need to eat)
- ...resistant to economic growth (there is a limit to consumer intake)

Sector economic growth relies upon savings made from process control, quality improvement, waste reduction – this is where technology comes in.

Food fraud - widespread and increasing

Food fraud - widespread and increasing

Most frequent food frauds - by economic value

Source: Food safety Magazine/World Customs Organization

Molecular spectroscopy for food analysis

- The food industry wants robust, rapid and low-cost methods
 a big ask!
- Near-IR devices are commonly used for measurement of gross composition – fast, cheap
- Mid-IR and NMR more useful for examining subtle parameters relevant to fraud
 - Edible oils, fats
 - Fruit juices, purees
 - Meat, poultry
 - Ground and instant coffee

- Coffee a very important economic commodity
- Over 2,250,000,000 cups of coffee are consumed in the world every day
- 25,000,000 farmers worldwide are involved in producing coffee beans
- High-value product with large range of qualities and prices, and a long commodity chain...

... fraudulent substitution and adulteration is commonplace.

Can MIR and chemometrics be used to rapidly screen and identify ground roast coffees?

- Pure, <u>authenticated</u> freeze-dried samples, of the two main commercially grown coffee species:
 - 29 "Arabica" *these are "high-value" beans*
 - 23 "Robusta" these are low-value, rougher-tasting beans of a different subspecies
- Substitution of Robusta into Arabica and sale of the blend as "pure Arabica" is economic fraud worth £millions, and disadvantages honest producers

- Data analysis:
 - 1. Divide data at random into training and test sets
 - 2. Perform PCA on the training set
 - 3. Look for any clustering in the scores
 - 4. Apply the PCA compression to the test data
 - 5. Check that the test data follow the same pattern of clustering

PCA and PLS – Both are data compression methods

PCA results for DRIFT spectra, freeze-dried coffees

- Arabica training set
- Robusta training set
- Arabica test set
- A Robusta test set

Understanding the basis of the discrimination between species

- In the ATR analysis, PC loading 2 is the most important for discriminating species
- This loading shares many features with a mixture spectrum of chlorogenic acid and caffeine
- Robusta coffees score higher with respect to this loading – consistent with the known difference between species

ATR spectra of pure compounds and a mixture spectrum, compared with PC Loading 2

Composition of a typical fruit juice or puree:

Fruit purees are imported in large quantities into the UK for a wide range of processing needs (jams, jellies, yoghurts, etc)

Products arrive pureed, frozen or sulphited (preserved)

Main authenticity issues:

- Addition of chemicals e.g sugars, organic acids
- Addition of local ground water (very difficult to detect this!)
- Addition of other (cheaper) fruits
 - High value soft fruits extended with other, cheaper local produce (rhubarb, apple,...)

Aim: to develop a rapid MIR-based method for testing strawberry and raspberry purees for authenticity

details	training set samples	tuning set samples	test set samples
raspberry	1 - 55	1-53	1-51
blackberry	56 - 59	54-57	52-55
plum	60 - 64	58-62	56-59
strawberry	65-89	63-87	60-83
black currant	90-97	88-95	84-90
strawberry	98-135	96-132	91-127
apple	136 - 158	133-155	128 - 150
apricot	159	156	151
cherry	160		
mixtures of strawberry and apple	161-163	157 - 159	152-153
raspberries adulterated with 10, 30, 50, 70 90% w/w apple	164-171	160-167	154-161
mixtures of strawberry and apple	172-178	168-173	162-168
mixtures of strawberry and plum	179 - 181	174 - 177	169 - 171
strawberry	182-227	178-223	172-216
blackberry	228-232	224-228	217-220
black currant	233-236	229-231	221-223
cherry	237 - 244	232-238	224-230
plum	245-247	239-241	231-232
strawberry	248 - 257	242-250	233-241
apple	258	251	
apricot	259	252	
raspberries adulterated with 2, 4, 6, 8% w/w sucrose	260-299	253-292	242-280

- Spectral analysis of large number of independent, authentic fruits
- Compare new "unknowns" with the database of authentic spectra, to detect anomalies in profiles
- Around 900 samples analysed over three harvest years

details	training set samples	tuning set samples	test set samples
raspberry	1-55	1-53	1-51
blackberry	56 - 59	54-57	52-55
plum	60 - 64	58-62	56-59
strawberry	65-89	63-87	60-83
black currant	90-97	88-95	84-90
strawberry	98-135	96-132	91-127
apple	136 - 158	133-155	128 - 150
apricot	159	156	151
cherry	160		
mixtures of strawberry and apple	161-163	157 - 159	152-153
raspberries adulterated with 10, 30, 50, 70 90% w/w apple	164-171	160-167	154-161
mixtures of strawberry and apple	172-178	168-173	162-168
mixtures of strawberry and plum	179 - 181	174-177	169-171
strawberry	182-227	178-223	172-216
blackberry	228-232	224-228	217-220
black currant	233-236	229-231	221-223
cherry	237-244	232-238	224-230
plum	245-247	239-241	231-232
strawberry	248-257	242-250	233-241
apple	258	251	
apricot	259	252	
raspberries adulterated with 2, 4, 6, 8% w/w sucrose	260-299	253-292	242-280

- Data analysis:
 - 1. Divide data at random into training, tuning and test sets
 - Perform PLS on the training set y is a "dummy" variable indicating raspberry (=1) or non-raspberry (=2)
 - 3. Apply each regression model (different numbers of PLS scores) to the tuning set
 - 4. Make decision on which is the optimum model
 - 5. Finally, apply to test set data

Regression results from applying different models to tuning set

Optimal PLS model

Final test of the model: application to "unknowns" (test data

Detection limit: ~10% by weight of adulterant fruits present in a raspberry puree

- Horsemeat scandal of 2013 was largest European incident of food fraud
- Food sector has scaled up its internal testing, but to date...
 - No regulatory changes
 - No increased funding for independent testing/policing
- Elliott review on food fraud has led to:
 - New Food Crime unit
 - New Network of Centres of Excellence in Authenticity

Different meats have different fatty acid "fingerprints"

British Patent Application 1315962.9 (6 Sept 2013) "NMR Sample Analysis" – protects the idea of using low-field NMR spectroscopy to speciate meat via its fatty acid fingerprint

Speciation of meats

OXFORD INSTRUMENTS & IFR EXTRA: Raw Beef Authentication

Pulsar

Raw Beef Authentication

Y:\OxfordInstrumentsData_Meat_October2013\Horse

Change Folder...

meat_sample_100.txt	
meat_sample_101.txt	
meat_sample_102.txt	
meat_sample_103.txt	
meat_sample_104.txt	
meat_sample_105.txt	
meat_sample_106.txt	
meat_sample_107.txt	
meat_sample_108.txt	
meat_sample_109.txt	
meat_sample_110.txt	
meat_sample_111.txt	
meat_sample_112.txt	
meat_sample_113.txt	
meat_sample_114.txt	
meat_sample_115.txt	
meat_sample_93.txt	
mask semals Of his	_

Analyse Selected Samples...

Current Sample: meat_sample_112.txt

- - X

Result: NOT BEEF

Speciation of meats

First results from commercial installation:

Test PORK Samples

Test BEEF Samples

Key points

- Molecular spectroscopy techniques useful for analysis of a wide range of foodstuffs
- Not as sensitive as high-end techniques (MS, GC-MS, LC-MS, high-field NMR) - but ideal for rapid screening needs
- In combination with chemometrics, can provide quick methods for detecting adulteration at gross levels
- Instrumentation is relatively cheap and robust
 - can be placed in food production environments

Further information

- My team webpages
 - <u>http://asu.ifr.ac.uk/</u>
- On-line library of FTIR spectra of foods
 - <u>http://www.ifr.ac.uk/ASU/FTIRLibrary.html</u>
- Book (not science literature, but good read):
 - "Swindled: The Dark History of Food Fraud, from Poisoned Candy to Counterfeit Coffee", by Bee Wilson (2008)
- This talk (and previous, on multivariate stats) will be uploaded to:
 - <u>http://asu.ifr.ac.uk/resources/lecture-notes/</u>