

Meat misconduct and coffee crime: using analytical chemistry to fight food fraud

Prof E K Kemsley Head of Core Science Resources Quadram Institute Bioscience Norwich Research Park

kate.kemsley@quadram.ac.uk

Food fraud research – why we do it

- Mis-labelling of foods is economic fraud on a huge scale (~\$50 billion annually worldwide)
- Disadvantages honest producers/suppliers
- Consumer confidence people want to know what they are eating – nobody likes being duped & defrauded
- Health implications whilst most food fraud is harmless, some incidents have killed or seriously injured people

Most prevalent food frauds – by economic value

Source: Food safety Magazine/World Customs Organization (2012)

The 2013 "Horsegate" scandal

Undeclared horsemeat was found in wide range of food products

- Partial (or even total) substitution of beef, lamb, etc with horse in ready meals, burgers,...
- Fraud was widespread across Europe largest £££ incident ever recorded
- Occurred early in the supply chain
- Likely to have been happening for years

Routine testing of the supply chain was inadequate

- Targeted species verification horse was not looked for
- <u>Too few tests there is a need for faster, cheaper, untargeted methods</u>

An opportunity for Low-field NMR spectroscopy?

60Mhz permanent magnet "bench-top" spectrometers are a recent development Ouadram

Compared with high-field spectrometers, these are:

- Very low capital costs (< 1/10th of high-field)
- No running costs (no cryogens, no air-con)
- Robust and easy-to-use by non-specialists

An opportunity for Low-field NMR spectroscopy?

Ouadram

= powerful combination for industrial applications

...such as food authenticity screening

60MHz proton NMR spectra of animal fats

Most (>90%) of the fat in foods is present as triglycerides

Extraction and acquisition of spectra from meat

Different meats have different fatty acid profiles

Ouadram

Institute

Challenges:

- Natural variability within populations
- Need lots of authentic reference samples (including potential adulterants, e.g. <u>horse</u>)

Quadram

Institute

Challenges:

• Need to consider issues of representative sampling

Statistical analysis of > 500 spectra from beef and "non-beef"

Easy-to-use software package

Quadram Institute

Beef authentication: summary

Analytical service for beef authentication by fatty acids, offered through QIB Extra

Software package sold by Oxford Instruments

Mass Spectrometry for species identification via proteins

- Why?
 - We want methods capable of analysing "complex foods": multiple ingredients, cooked, canned, etc
 - Protein component is stable, present in almost all foods, and quite specific to individual components
- Current work: 'buffalo mozzarella'
 - Premium product, currently trendy, limited supply..... hence vulnerable to fraud

Mass Spectrometry for species identification via proteins

- Standard approach:
 - extract and digest the proteins in a sample
 - do proteomics and try and pick out proteins (and marker peptides) for the species of interest
 - → In general, the proteins and marker peptides are chosen for the sample at hand – no particular consideration of commonality across other species

Mass Spectrometry for species identification via proteins

- Our approach: "Corresponding Proteins Corresponding Peptides" - CPCP
 - targets a protein(s) nominally "the same" across all species of interest (e.g. Alpha s1 Casein found in milks)
 - the protein needs to possess some small but speciesspecific differences in the amino acid sequence
 - the peptides carry forward these species-specific differences, giving clear species markers which can be quantified using MRM-MS

Ensuring the Integrity of the European food chain

Universität Stuttgart

Workpackage 13:

Consumer and Brand Protection in Complex Foods

from Protein Signatures using Mass Spectrometry

Comparing sequences of the targeted protein, alpha s1 casein

P02662 (bovine) |MK*LLILTCLVAVALARPK*HPIK*HQGLPQEVLNENLLR*FFVAPFPEVFGK*EK*VNELSK*DIGSESTEDQAMEDIK* 062823 (buffalo)|MK*LLILTCLVAVALARPK*QPIK*HQGLPQGVLNENLLR*FFVAPFPEVFGK*EK*VNELST DIGSESTEDQAMEDIK*

P02662 (bovine) |QMEAESISSSEEIVPNSVEQK*HIQK*EDVPSER*YLGYLEQLLR*LK*K*YK*VPQLEIVPNSAEER*LHSMK*EGIHAQQK* 062823 (buffalo)|QMEAESISSSEEIVPISVEQK*HIQK*EDVPSER*YLGYLEQLLR*LK*K*YN VPQLEIVPNLAEEQ LHSMK*EGIHAQQK*

P02662 (bovine) |EPMIGVNQELAYFYP<mark>E</mark>LFR*QFYQLDAYPSGAWYYVPLGTQY<mark>T</mark>DAPSFSDIPNPIGSENS<mark>E</mark>K*TTMPLW 062823 (buffalo)|EPMIGVNQELAYFYP<mark>Q</mark>LFR*QFYQLDAYPSGAWYYVPLGTQY<mark>P</mark>DAPSFSDIPNPIGSENS<mark>G</mark>K*<u>TTMPLW</u>

- The red and blue dots indicate cleavage sites from digestion with trypsin
- Coloured sequence strings indicate useful peptides:
 - red for bovine, blue for buffalo, with yellow highlights for sequence differences
 - green for peptides identical in both useful for 'calibrating' alpha s1 casein levels

Selective } reaction monitoring mass spectrometry (SRM-MS, MRM-MS)

m/z	fragments	R _t	species	Amino acid sequence
308	(365, 502, 147, 278)	4.5	Bovine	LHSMK
345	(590, 476, 234, 347)	10.0	Bovine	VNELSK
375	(205, 415, 546, 318,)	26.3	Both	TTMPLW
416	(488, 391, 587, 175)	11.4	Both	EDVPSER
456	(568, 471, 667, 304)	22.9	Both	EDVPS(Pho)ER
634	(992, 771, 658, 935)	29.8	Both	YLGYLEQLLR
693	(920, 992, 676, 1091)	31.1	Both	FFVAPFPEVFGK
791	(802, 901, 1015, 1257)	22.0	Bovine	VPQLEIVPNSAEER
831	(882, 981, 1094, 785)	22.9	Bovine	VPQLEIVPNS(Pho)AEER
844	(1253, 1423, 1028, 872)	23.3	Buffalo	HQGLPQGVLNENLLR
880	(1325, 1495, 872, 971)	24.0	Bovine	HQGLPQEVLNENLLR
1227	(1397, 278, 1496, 1609)	29.2	Buffalo	YNVPQLEIVPNLAEEQLHSMK
1286	(375, 635, 260, 504)	25.0	Buffalo	VNELS(Pho)TDIGS(Pho)ESTEDQAMEDIK

Quantifying components in mixtures

 The relative amounts of two 'corresponding' peptides are a proxy for the levels of alpha s1 casein, and hence levels of each species, in a binary mixture

 Count fragments to measure amounts (integrated areas of peaks)

Analysis of bovine in buffalo mozzarella cheese mixtures

Summary of MRM-MS for authentication of cheese:

- MRM-MS + CPCP method provides a route to quantitation
- Useful accuracy and precision economic adulteration detection, not contamination levels
- Robust method with good specificity and selectivity promising for the analysis of complex foods
- Preliminary retail/restaurant survey suggests there may be a problem in the sector!

Survey samples: labels declared as 'buffalo mozzarella'

Low-field NMR analysis of lipophilic extracts from ground roast coffee

Can we verify the labelling claim?

"Arabica" is used as a sign of "high quality" on expensive products

About coffee...

- 25,000,000 farmers worldwide are involved in producing coffee beans
- Over 2,250,000,000 cups of coffee are consumed every day

- Arabica has a higher sensory quality than robusta, but is lower yielding and harder to grow
- Coffee has a long supply chain, making it vulnerable to fraud

Economics of coffee fraud

Coffee trading prices at April 2017: Arabica: \$3.62 per kg Robusta:\$2.18 per kg Worldwide annual production: Arabica: 5.6 million tonnes Robusta:3.7 million tonnes

(5.6 x 10⁹kg) (3.7 x 10⁹kg)

(data source: IndexMundi)

- Suppose just 5% of Arabica beans are fraudulently substituted with robusta: at trading prices, this is worth around \$500million to the fraudsters
- Significantly disadvantages honest producers and traders
- Fraud of any kind diminishes trust in the food supply chain

60MHz ¹H NMR spectra of lipophilic extracts from coffee beans

Confronting the literature opinion

- Until 2017, the consensus was that Arabica coffee beans contain no 16-OMC at all
- Our work was the first to show that this was not true
- By NMR and LC/MS independently, we found 16-OMC in extracts from authentic Arabica beans (which had been collected at source and supplied to us by RBG (Kew Gardens)

Detection limit via serial addition of robusta to Arabica

Comparison of results with high-field (600MHz) NMR

Developing the method: establishing normal range of 160MC/K in Arabica

Summary...

- Turnaround time: ~45mins per sample (extraction and spectral acquisition)
- ~100 coffee samples of known composition used to test protocol
- Survey of retail samples obtained worldwide suggest problems in the sector

References

Food Chemistry Volume 248, 15 May 2018, Pages 52-60

Food Chemistry Volume 175, 15 May 2015, Pages 1-9

Rapid Communication

ELSEVIER

Authentication of beef versus horse meat using 60 MHz ¹ H NMR spectroscopy

W. Jakes ^{a, 1}, A. Gerdova ^b, M. Defernez ^a, A.D. Watson ^a, C. McCallum ^{a, 2}, E. Limer ^{a, 3}, I.J. Colquhoun ^a, D.C. Williamson ^b, E.K. Kemsley ^a $\stackrel{\otimes}{\sim}$ $\stackrel{\boxtimes}{\sim}$

A D Watson et al (2015) **"Meat Authentication via Multiple Reaction Monitoring Mass Spectrometry of Myoglobin Peptides"** Analytical Chemistry 87 (20) 10315–10322

Y Gunning et al (2016) **"Species determination and quantitation in mixtures using MRM mass spectrometry of peptides applied to meat authentication"** Journal of Visualised Experiments

Y Gunning et al (2019) **Quantitative authenticity testing of buffalo mozzarella via αs1-Casein using multiple reaction monitoring mass spectrometry** Food Control doi.org/10.1016/j.foodcont.2019.02.029

Rapid Communication

16-O-methylcafestol is present in ground roast Arabica coffees: Implications for authenticity testing

Yvonne Gunning ª 쩝, Marianne Defernez ª 쩝, Andrew D. Watson ª 쩝, Niles Beadman ª 쩝, Ian J. Colquhoun ª 쩝, Gwénaëlle Le Gall ª 쩝, Mark Philo ª 쩝, Hollie Garwood ª 쩝, David Williamson ^b쩝, Aaron P. Davis º 쩝, E. Kate Kemsley ª 유 쩝

Food Chemistry

Volume 216, 1 February 2017, Pages 106-113

3 -----

Low-field ¹H NMR spectroscopy for distinguishing between arabica and robusta ground roast coffees

Marianne Defernez^{a,} ≚, Ella Wren^{a,} ≚, Andrew D. Watson^{a,} ≚, Yvonne Gunning^{a,} ≚, Ian J. Colquhoun^{a,} ^S, Gwénaëlle Le Gall^{a,} ^S, David Williamson^{b,} ^S, E. Kate Kemsley^{a,} ▲ S