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In this talk

What is multivariate data?

Why take a multivariate approach to data analysis?

Introducing ‘Chemometrics’

Avoiding pitfalls – how the incorrect use of multivariate 
methods can lead to nonsense results
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What is multivariate data?
A simple (non-chemical) example: variables that might 
influence a child’s weight
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How could we analyse this data?
• Dependent variable vs. each predictor:
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What about a multivariate approach?
• Make use of both predictor variates:

• Regression no longer describes a line, but a plane in a 
3-d coordinate system

• Before widespread use of computers in the last 20 
years, this was laborious - even for datasets of this size

• Multivariate analysis of ‘big data’ is still an evolving 
field

WEIGHT  =  m1 . HEIGHT  +  m2 . AGE  + c
y =  m1 .x1   +   m2 .x2 +  c
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What about a multivariate approach?
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• Make use of both predictor variates:

HEIGHT



An example from chemistry…
• 60MHz proton NMR spectra of edible oils

(sunflower, corn, olive, rapeseed, sesame, walnut,….)

• Why? Compositional information for labels
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An example from chemistry…
• 60MHz proton NMR spectra of edible oils

(sunflower, corn, olive, rapeseed, sesame, walnut,….)
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An example from chemistry…
• The oleic acid content (C18:1) was also measured by a GC-MS reference 

method
• How could we obtain a calibration of GC-MS %w/w versus NMR peak 

areas for analysing future samples?
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An example from chemistry…
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• …but we could also plot %w/w oleic acid versus both peak 
areas simultaneously:
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An example from chemistry…
olefinic

glyceride

bis-allylic

omega

• 4 peak areas plus the %w/w data to deal with
• Can no longer plot the complete data easily on ordinary axes
• Need to leave behind “2-d thinking”
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Strategies for handling multivariate data
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Focus on outcome: ‘Actual’ versus ‘Predicted by regression’
• Multivariate regression of GC-MS %w/w C18:1 onto [olefinic, glyceride, 

bis-allylic, omega] NMR peak areas:

MONO %w/w      =     m1 . OLEFINIC  +  m2 . BIS-ALLYLIC  +     
m3 . GLYCERIDE  +  m4 . OMEGA + c

y    =      m1 .x1   +   m2 .x2 +   m3 .x3 +   m4 .x4 +  c

y      =       X  m                            (vector & matrix notation; to remove

(n x 1)        (n x 4)(4 x 1)                   the need for c, X is mean-centered)

ෝ𝐦 =  (XTX)-1 XT y                   Least squares estimate of m

ො𝐲 =   X ෝ𝐦 Values of y predicted by regression



Strategies for handling multivariate data
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Focus on outcome: ‘Actual’ versus ‘Predicted by regression’
• Multivariate regression of GC-MS %w/w C18:1 onto [olefinic, glyceride, 

bis-allylic, omega] NMR peak areas:

Actual %w/w by GC-MS

Predicted %w/w 
from regression

ො𝐲

𝐲



Strategies for handling multivariate data
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A set of d attributes of the objects, e.g.

➢ Spectral intensity values (each row in

the data matrix = a spectrum)

This could be something like:

➢ Concentration of some chemical component 

➢ A category e.g. species, variety,,,,

Viewing a large, multivariate dataset as a matrix:



Strategies for handling multivariate data
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Viewing a large, multivariate dataset as a matrix:
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Strategies for handling multivariate data
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Regression with very large data matrices

y      = X   m 

(n x 1)             (n x d)(d x 1)  d may be very large!

ෝ𝐦 =  (XTX)-1 XT y

 If d > n (more attributes per object than total number of objects), 

then (XT X) is “singular” and not invertible

 This leads to mathematical problems in calculating ෝ𝐦 directly

 “Chemometrics” methods were developed to overcome this 

problem



Introducing Chemometrics
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• A family of multivariate statistical 
methods for treating the large datasets 
of modern analytical chemistry

• Originated in the 1980’s when 
computers first started to become 
connected to analytical instruments 
(especially infrared)

• Some chemometric methods were 
proposed theoretically several decades 
earlier, but were impossible to carry 
out Nicolet 7000 Series FTIR Spectrometer, 1984



Introducing Chemometrics
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• Some well-known chemometrics methods:
• Principal component analysis (PCA)
• Partial least squares (PLS)
• Support Vector Machines 
• Linear Discriminant Analysis
• ...and many more... (+ lots of synonyms!)

• Same methods have spread throughout the sciences
• Psychometrics
• Econometrics
• Meteorology
• Bioinformatics,...



Principal Component Analysis
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• Rearranges the information in the data set to make it 
easier to deal with (visualise, display, analyse further, 
etc)

It is a matrix decomposition method:
X = Z. PT

…where P is a matrix of ‘loadings’ and Z a matrix of ‘scores’

The loadings are the eigenvectors of the data covariance 
matrix XT X / (n-1)



Principal Component Analysis
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Principal Component Analysis
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PCA in action: a simple example 
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Raw data: 60 infrared spectra of edible oils

--- Hazelnut
--- Extra virgin Olive

 DEODORIZED HAZELNUT OIL IS A KNOWN ADULTERANT OF OLIVE OILS 
(SIMILAR FATTY ACID PROFILES)

 The data:

◦ 60 oils  x  250 absorbance values (= X matrix)

◦ We also have a category variate indicating whether a spectrum was from 
an olive or hazelnut oil (= y vector)



PCA in action: a simple example 
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PCA Scores

--- Hazelnut
--- Extra virgin Olive

 Scores plots reveal grouping not 
apparent in raw data

 Loadings indicate features 
responsible for patterns in the scores 
w.r.t. each axis



PC Regression
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• 164 infrared spectra of mixtures of olive oils with hazelnut oils
• Half used in Principal Component regression (half retained as a test set)

Instead of the original data,
we regress onto the PC scores   

y      = Z . m 
(n x 1)          (n x q)(q x 1)  

ෝ𝐦 =  (ZTZ)-1 ZT y (regression coefficients)

ො𝐲 =   Z ෝ𝐦 (predicted y values)

Equivalent to:

ො𝐲 =   X P ෝ𝐦

y

ො𝐲



PC Regression
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• Using too many scores leads to ‘overfitting’ (including irrelevant noise in the model)
• Choosing the right number of scores is hard - this is the ‘curse of dimensionality’



PC Regression
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• Choosing the right number of scores is hard - using too many leads to ‘overfitting’
• This is the ‘curse of dimensionality’

Increasing number of scores 
(=predictors) in multivariate model
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Partial Least Squares (PLS) Regression
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• Like PCA, PLS is a matrix decomposition method that rearranges 
and compresses the data into scores:

X = Z. PT

• Again, the scores are uncorrelated, and there are fewer of them 
than the original variates

• However, PLS also makes use of the y data in the matrix 
decomposition

• This means that PLS is more efficient than PCA, because the 
scores have maximized relevant information content 



Partial Least Squares (PLS) Regression
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Partial Least Squares (PLS) Regression
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More on overfitting
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"When Elvis Presley died, there were 48 professional Elvis impersonators.  

Today, there are 7328.  If that growth is projected, within twenty years, 

one person in four on the face of the globe will be an Elvis impersonator.“

….from the Financial Times
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What did the “analyst” do wrong?

• Only had n = 2 data points - never enough!

• Noise was incorporated into model (overfitting)

• Assumed log-linear model for no good reason

• Extrapolation fail



More on overfitting
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PCA

 PLS is so efficient, it can even 
extract some systematic 
information from noise 

 This is, of course, entirely useless

‘Group 1’ data

‘Group 2’ data
‘Group 3’ data



Validation in multivariate analysis
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The only way to be confident about the performance of a multivariate model 
is to perform some kind of model validation.

By applying a model to an independent test set, we can check for:

• Lack of generalization ability (unable to extrapolate successfully to new 
data)

• Incorrect assumptions about nature of model (e.g. linear , log-linear, etc)

• Overfitting (incorporating irrelevant information e.g. noise into the model)

• Any multivariate model can be overfit, but this is especially likely when 
the data are ‘high-dimensional’ (as in spectroscopy/spectrometry)

• People also use various forms of cross-validation to guard against 
overfitting (permutation tests, bootstrapping etc).



Validation in multivariate analysis
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• Fast, modern computers make possible all kinds of 
bespoke, rigorous validation methods
• This field of research is still evolving

• Validation not always provided in ‘standard’ data analysis 
software 

• This can allow multivariate methods to be misused
• Particularly true for the software supplied as standard 

with analytical instrumentation



Cross-validation, bootstrapping, permutation, etc…
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Example with a two-group classification problem:



Leave-one-out cross-validation in PLS Regression
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Test set error

Training set error

Error by Leave-one-out 
cross-validation

PLSR of %w/w olive oil in olive/hazelnut mixtures



Cross-validation, bootstrapping, permutation, etc…
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Permutation resampling to validate PLS
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• Raman spectroscopy was used to collect spectra from apples, 
to look for evidence of residue from labels



Permutation resampling to validate PLS
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Now repeat the PLS, but use a randomly scrambled y-vector when 
carrying out the matrix decomposition

This shows that any random group assignment to the data  would 
have produced a similar outcome – so the finding is NOT significant
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Even more complicated schemes…
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e.g. Leave-m-out double cross-validation



Summary
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• Multivariate = more than one predictor variate

• Data from modern analytical techniques is usually highly 
multivariate, with large number of attributes and relatively smaller 
number of samples

• ‘Chemometric’ data compression methods like PCA and PLS are very 
useful, especially for graphical representation

• Overfitting is a real possibility - naive use of multivariate statistics can 
lead to misleading results

• Best practice requires the use of a suitable model validation technique 

• Matrix language software packages are the best platforms for 
chemometric analysis (e.g. Matlab, R, Python,….) 

• There is a real shortage of these skills out there in the real world!


